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ON APPROXIMATION OF THE LEVEL PROBABILITIES AND ASSOCIATED DISTRIBUTIONS

IN ORDER RESTRICTED INFERENCE

Tim Robertson and F. T. Wright

SUMMARY

-'t

The use of much of the distribution theory developed for order re-

stricted inference has been limited by the lack of computation algorithms

for the "level probabilities" encountered in that theory. An approxima-

tion for these level probabilities, which accounts for the pattern of

Jlrlge and small "weights," is developed. This approximation and the equal

withts; approximation are examined in several different ways includir the

u,- of randomly g;enerated weight sets. Both approximations appear to be

reasonable for weight sets having a moderate amount of variability. The

puality of the equal weights approximation, as a function of the amount

of variability in the weights, deteriorates more quickly for certain pat-

terns of large and small weights than for others. Thus, the approximation

based upon the pattern of large and small weights is a significant improve-

ment over the equal weights approximation. Finally, Siskind's (1976)

%pproximation, which can be applied if the number of parameters is not

too large, is discussed.

Key words and phrases: Order restricted inference, level probabilities,

chi-bnr-square distribution.
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1. Introduction. The chi-bar-square (x2) and E-bar-square (E

distributions are fundamental to the theory of order restricted hypothesis

tests. For a comprehensive treatment of the early work in order restricted

inference the reader may consult Barlow, Bartholomew, Bremner and Brunk

(1972). These distributions have tail probabilities which are linear com-

binations of the tail probabilities of standard distributions and they

depend upon the order restriction through the coefficients in these linear

combinations. The values of these coefficients are the probabilities that

the order restricted maximum likelihood estimates of normal means assume

specified numbers of distinct values, which are called levels. These prob-

abilities are computed under the hypothesis that the population means are

equal. The maximum likelihood estimates are based upon independent samples

from each of the populations and depend upon the vector of relative precisions

of the sample means as estimates of the corresponding population means.

The precisions will be referred to as weights. The use of these tests has

been limited by the fact that these level probabilities can be virtually

impossible to compute if the weights are not all equal. In this paper we

describe a technique for approximating these level probabilities for a

linear order restriction and for unequal precisions. This approximation

is based upon an idea of Chase (1974) and uses the pattern of large and

mriall relative precisions. It seems to be particularly good when the rela-

tive precisions have two distinct values. However, it seems to provide a

:.;taisfactory approximation as long as the variation in the relative preci-

sions is not too large. For example, our study of the case of five means

indicates that If the ratio of the largest relative precision to the small-

est relative precision is no more than 4.7 then this approximation provides
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an adequate approximation for the tail probabilities of the 2 distribu-

tion. This is probably due to the lack of sensitivity of the level proba-

bilities to changes in the weights. This "robustness" was noticed by both

Grove (1980) and Siskind (1976). Siskind conjectured that, because of this

robustness, the equal weights case should provide reasonable approximations

except in extreme cases.

fn Section 2 we provide some ba6kground on the computation of these

level probabilities and report upon our investigation of Siskind's conjec-

ture about the adequacy of the equal weights approximation. It appears

Qi.}t, I4hw quality of the equal weights approximation is related to the pat-

tern of large and small weights and in Section 3 we explore another approx-

imation which is based upon such patterns. The equal weights case is used

!tn a benchmark for judging this new approximation. In Section h we briefly

di:-cu-ss Sfs;kind's (1976) approximation for the level probabilities.

2. Preliminaries and the equal weights approximation. Suppose we have

*independent random samples from each of k normal populations having means

and assume that the corresponding sample means and sample

sizes are denoted by xl,X 2 ,- .,xk and nl,n2 ,.. ,nk. Let Pw(A'k) de-

rite the probability that the maximum likelihood estimates of

subject to the linear order restriction H :k 5 Pk have

,:Xuotly A distinct levels. These level probabilities are computed under

the assumption that p = P 2 ..... k and they depend upon the vector

w = (wl,w 2, w ) of relative precisions of the sample means, xi, as

estimates of the corresponding population means, Pi; i =1,2,''',k. We

ktiwii or i lurnIowti the.y are issumed equal. Tht v! ll' ,I," w. i: .O O'./
1 1 1



in the former case and this value is n. in the latter.

For k ! 5 and for arbitrary weights, formulas for P (1,k) are given
V

on pages 140-142 of Barlow et al. (1972). There are typographical errors

in the formulas for Pw(3,5) and Pw(1,4). The formula for Pw(5,5)

involves an integral which may be evaluated numerically or approximated

using methods described in Barlow et al. (1972). Cran (1981) gives a con-

puter algorithm for the computation of Pw(1,k) for k 5 4 and for their

approximation for k = 5,6. For k = 5 he uses an approximation due to

Plackett (1954) and for k = 6 he uses an approximation due to Childs (1967).

For the equal weights case, that is, wI =w2 = ... = w, a recursion

formula for computing Pw (,k) is given in Corollary B on page 145 of

Barlow et al. (1972). This formula is a quite satisfactory computation

algorithm for this important special case. We denote the equal weights

level probabilities by P(I,k). The generating function of the sequence

[P(I.,k) iklis given by

(S) =s+k-1= s(s+l)...(s+k-l)
k kkk!

Grove (1980) and Siskind (1976) both claimed that the Pw(1,k)'s are

not very sensitive to changes in the weights and that the equal weights

ca ;e should provide reasonable approximations except for extreme eases.

SL!;kind felt that the pattern of large and small weights was important and

that approximation is difficult for a U-shaped configuration of weights,

Lhat io, for weight sets with w1  and Wk relatively large and the other

w. -maI1 I .

For the most part, we will judge approximations as they apply to
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Bartholomew's X distribution. The tail probabilities of this distribu-

tion are given by

pr [--2 P pW( .,k) pr [- 2_1t =hlX- t ]

2where X, denotes a standard chi-square variable having A-i degrees

freedom (x -0). Distributions, which have tail probabilities which are

linear combinations of the tail probabilities of standard distributions

arise in several restricted testing problems. In addition to those dis-

cussed in Barlow et al. (1972), see Robertson and Wegman (1978), Robertson

(1978), Grove (1980), Robertson and Wright (1981), Robertson and Warrack

(1981), and Dykstra and Robertson (1981a,b).

Robertson and Wright (1982) derive upper and lower bounds

-2 -2f.r the X and E distributions and prove that, in general, these bounds

cannot be improved upon. The lower bound is approached using U-shaped

weight sets of the form (a,ec,..,€,b) where a,b > 0 and C -- 0.

The upper bound is approached using f-shaped weight sets of the form
HH-i H-icH)

(E:,i ,' ,,l,E,'' , -C ) and letting e -4 0. This is for odd

k where k = 2H+l. The obvious adjustments are made for even k.

These bounds can differ substantially. For example, for k = 5 the

5 percent, equal weights critical value is 5.049. The upper and lower

bounds for pr[X[ Z 5.049] are .013 and .096.

-2What Ls the &ate of conveAgence of prw[X5 > t] to the bound6?

WI, ,'ompluted prw[X' - 5.049] for various weight sets. Since k is 5

W- ' r ,' Ii;.- , 112 L1 . ru ,ieri :i.] r te, r:LI iim .lI ) (n il ow ,i, :d .
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an exact value for prw[X 5.049]. If the equal weights approxi-

mation is good then this should be close to .05. For each weight set we

ul:,o comniitoed the ratio, R, of the largest weight to the smallest weight

in order to gain some feel for the likelihood that the weight set might be

,ncountered in practice. For U-shaped configurations we let
-i

w (1,ee,,l) with e chosen so that R = c ranged between 1 and 30.

The results are given in Table 1. The probabilities, pr w[X 5  5.049]

decreased from .05 at e = 1 to .021 at e = .0333. We see that the lower

bound, .013, is approached rather slowly.

For n-shaped configurations we let w = (eq,lie,) with C again

-1
chosen so that R = e ranged between l and 30. These results are also

(given in Table 1. These probabilities increased from .05 to .075. Thus,

it;;-m:; that. while the range of probabilities is considerable it :V iit, !vM

extreme as the bounds suggest, at least for weight sets usually encouriterod

in practice.

A'e U-shaped and n-shaped the onty configutati0n o6 weightt fo4

which the equal weight case give a poor approximation?

We carried out a "random search" for weight configurations for which

pr~ z 5.049] is not close to .05. Five uniform [0,11 random numbers,
w5

U ,U 2'.. U 5 were generated and, in order to make the weight sets compar-

able, we set . = U./ 5  U =1,2, ,5. We repeated this process

-2
10,000 times and for each weight set we computed pr [X5 > 5.049] and the

w 5

ratt io ofr t~h,, ],'ge:t wei pht to the smallest weight in the weig;ht ,t . The

10,000 ratios ranged from 1.1 to something larger than 10,000. Recall that,

because of the bounds, these probabilities must fall between .013 and .096.

In Table 2 we have reported a frequency distribution for these 10,000

probabilities. All 10,000 probabilities fell between .0219 and .0803.
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w, = (l,c,c,e,l) w = (e,,,N c)

£ B prwfx 5,0491 prw[t2 5.0493

1.0000 1 .0500 .0500

.5000 2 .0420 .0557

.3333 3 .0375 .0590

.2500 4 .0346 .0612

.2000 5 .0324 .0629

.1000 10 .0267 .0679

0667 15 .0240 .0705

.0500 20 .0224 .0723

0400 25 .0213 .0736

.0333 30 .0205 .0746

-2

Table 1. prw[X 2 5.0491 for various weight configurations.
5

Mini- Maxi- Mini- Maxi-
Fre- mum mum Fre- mum mum

Snterwa quency Ratio Ratio Interval quency Ratio Ratio

[.o1 ,.o16] 0 [.056,.o6o] 1116 2.2 610.2

[.o16,.o201 0 [.o6o,.o64] 670 3.4

[.0200.024] 4 20.8 CO [.o64,.o68] 357 5.0 4777.9

[.004,0.281 22 18.3 571.2 [.o68,.072] 145 6.9 95)3.2

[.028,.032] 73 8.0 2450.7 [.072,.076] 54 14.9 2075.1

[.032,.036] 284 5.2 c [.076,.080] 17 34.5 1622.1

[.036,0o40] 719 3.4 O [.o8o,.o841 2 812.0 1597.7

[.o4o,.o44] 1319 2.0 4052.0 [.o84,.o881 0

[.044,.o48] 1781 1.4 3531.9 [.088,.0921 0

[.o48,0.52] 1876 1.1 2996.o [.092,.o96] 0

[.052,0.56] 1561 1.4 1648.8

w -

generated weight sets.
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The, number of these probabilities which fell between .040 and .060 was

Y353. We would feel that for these weight configurations the equal weights

ease provided an adequate approximation.

Large ratios are not necessarily associated with poor approximations.

However, every ratio which is associated with a probability outside of

.0148,.052] is at least 1.4, indicating that if the ratio of the largest

woight. to the smallest weight is less than 1. the equal weights case

:;hould provide a very good approximation. EvEry ratio which is associ-

ited with a probability outside of .Oh to .06 is at least 3.4 indi-

cating that if the ratio of the largest weight to the smallest weight is less

than 3.L then the equal weights case should provide an adequate approximation.

in another study, the weights were randomly generated in such a way

that the ratio of the largest weight to the smallest weight was constrained

.m that it. will not exceed a particular value. For example, we randomly

-tri,-rated the values of U. (recall that w. = U.iU.) in the, interval1 1 1

]/;',3/2J. Thus, the ratio will not exceed 3. For 1000 such randomly

generated weight sets all 1000 values of prw-2 5.019] fell in the inter-

val [.04l0,.05921. Results for other constraints are given in Table 3.

The quality of the equal weights approximation is related to both the

,Lmount of variab'.lity in the weights and to the pattern of large and small

w,, hts. In fact, it may be more directly related to this pattern than to

th. amount of variability. If we interpret U-shaped, very broadly, to

mean any weight pattern with relatively large weights at 1 and k but

a0 least one relatively small weight between 1 and k then all of the

w,.i ht. (' i t'u;, .i kI ',Or whi,'h pr. i." verv :m i h.ve !I
w

li;ptd 'ooifiurntion. A selection of 10 of these weitghts is gi'ven
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All 1000 values of

far w 5 5.049] in:

[1/9,10/91 [.0328,.o6701

[1/4,5/4]1 [.o3,r2,.o6271

[1/'3,4/3] [.0389,.06i3l

[1/2,3/21 [-0410,05921

[1,2] [.0443,.05591

[2,3] [.o466,0a5351

Tbe3. Limits on pr 2 5 5.0)49] when weights are generated to control

the ratio of the largest to the smallest weight.

w R pr[t)2 >- 5.(0491
w5

(433,.oo4c9,.oqil2,.o45l,.4256) 8. 06

(.4 887,.o94l,.0562,.oo69,.354il) 70.8

(.3,"88,.0126,.3777,.0024,.27r85) 157.4 .0312

(.352l,.o7 h7,.0059,.1899,.3764) 63.8 -031L

(.539?,.0)519,.0664,.0607,.3278) 91.4 03

..h.00)78,.l56,.04-0,.4222) 54.1

v..), .0o12(.?3,.0()334, .1782) 454.9 3

."!T ,. r91lr),. X10, .(366,. 3012) _2' .. 1279

-I' K_69,.98,.28) 765. .311

I 4 . W4'i ht, -onf: (1ratio!:-, fo~r whi eh rr s : ;., T I
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In Robertson and Wright (198 2a), it was shown that as e -0 0, the

distributions corresponding to the weight sets (l,e,e 2  
,E: k-) and

(k-l k-2 -k- k-2 '1) also approach the upper bound for suchX distribu-

tions. So we interpret f-shaped broadly to mean any pattern with small

weights in both extremes or several adjacent small weights at either extreme.

-2All of the weight configurations for which prw[X 5 > 5.0491 is very large

have such a f-shape. A selection of 10 of these weight configurations is

given in Table 5.

In Table 6 we have listed a selection of 10 weight sets for which R

-2is large, but pr[ X5 > 5.0491 is close to .05. In these cases there was

a -mall weight at one or both extremes and another at a nonadjacent inter-

1 V fl)ition.

Ln iuinmary, the equal weights case appear.- to give fair aproxima-

i, ons except for weight sets having a U-shaped or a f-shaped (interpreted

broadly) pattern of large and small weights. Regardless of this pattern,

if" the ratio of the largest weight to the smallest weight is less than 1.4,

the equal weights case gives a very satisfactory approximation and if this

ratio is less than 3.4 it appears to give an adequate approximation. If

the pattern of large and small weights is not either U-shaped or n-shaped

then the equal weights case can give a satisfactory approximation for

we ight. ets having ratios much larger than 3.4.

Arij, ".' J r__ iI. en j.g:,,,d pon the patterr oP 1oi!L : d Im:,. w,,i t .

Chos:e (I1')'(4) found a good approximation for an important special case. He

wus thinking about an experimental situation in which a researcher was
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R Prw[x 5 5.0491

(.0005,.0382,.4538,.3664,.141o) 907.6 .0789

(.0128,.1719,.4122,.334o,.0690) 32.2 .0729

(.3101,.4265,.2366,,0239,.0029) 147.1 .0721

(.0'r47,.1946,.3779,.3523,.0005) 755.8 .0730

(.0373,.1172,.5135,.3316,.0003) 1711.7 .0770

(.0065,.0902,.2685,.5091,.1257) 78.3 .0727

(.o4 i,.2618,.6850,.0117,.0004) 1712.5 .0827

(.0011,.0370,.3114,.416,.2399) 373.3 .0757

(.2622,.1880,.5439,.0055,.ooo4) 1359.7 .0721

(.o682,.2726,.3317,.3271,.ooo4) 829.5 .0740

Table 5. Weight configurations for which pr['X 2 fx 5.049] is large.
w5

w R prj 5> 5.0491

(.0225,.2335,.497,.0016,.3328) 273.1 .0491

(.1118,.1941,.0032,.6453,.o457) 201.7 .0494

(.0024,.3551,.0137,.1820,.4467) 186.1 .0492

(.0314,.5413,.0002,.2894,.1377) 2706.5 .0492

(.1276,.0017,.44oo,.3283,.1023) 258.8 .0489

(.1232,.0030,.2307,.5197,.1234) 173.2 .0481

(.o636,-3279,.0030,.5030,.1025) 167.7 .0510

(.2966,.0783,.0806,.5392,.0052) 103.7 .0503

(.5517,.01142,.2524,.1777,.0041) 134.6 .0515

(.0005,.38h2,.o349,.1678.,4126) 825.2 .0516

Table 6. Weight configurations for which the ratio is large and

p- 5.049] is close to .05.
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interested in comparing increasing dosages of a drug to a zero dose con-

trol. As Chase, and Williams (1971,1972) before him, noted, "researchers

often increase the sample size on the zero dose control over the sample

sizes of the nonzero dose levels." Assume that the control is indexed by

1. Chase developed an approximation for the case where w2 =w 3 ... =w k

-Lnd w1/w 2 > 1.

First, Chase found a recurzion formula for the limiting values of

)w (9,k) ; I = 1,2, -.. , k as wI  while the common value of w2,w3,-..w k

io held fixed. We denote the limiting probabilities by P.(I,k). Chase

-2 -2
tabled critical values for the X and E distributions associated with

these limiting values. For values of (w/W 2 ) between l and - he found

that a linear interpolation in (w /w2)i12 between the equal weights case
1 2

and this limiting case gives a very adequate approximation. For example, if

C denotes the appropriate critical value computed from these limiting level

probabilities and if C denotes the appropriate equal weights critical

value then the approximate critical value is given by C = [l-(W1/W 2)-12c

+ (W1/W2F 1 2 C . Chase gives both exact (kh4) and Monte Carlo (k>h)

evaluations of his approximation and concludes that they provide quite sat-

isfactory results. Our studies confirm this conclusion.

Starting with Chase's recursion formula, Robertson and Wright (1982b)

derived the generating function of the sequence of limiting level probabil-

1ties, k =1,2,.--. This generating function is given by

1/2 s + k - 3/2

(S)k- 3/

for k =i,2,' and, in turn, yields a sharper recursion formula for the

limiting level probabilities, namely,
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P,(l ,k+l) z (2k-l)P.(l,k)/(2k) = (2k)!/(2 2k(kM)
2

P,(k+],k+l) = P.(k,k)/(Pk) = (1/2 )k/k!

P (L,k+l) = P.(1-l,k)/(2k) + (2k-l)Pm(i.,k)/(2k).

Using this relation, it is a fairly simple matter to write a computer pro-

r'r'.Irn Lo generate P (1,k) for k up to any reasonable value such as 30.

'or k < 12, these probabilities are tabled in Robertson and Wright (1982b).

It was also noted in that work that the limiting values of Pw (A,k) for

the situation in which wl= w2  ... = Wkl and wk/W1 - are also given

by P (.Z,k).

WE! develop an approximation for P (2,k) based upon a pattern of large

and small weights in w. We first obtain the limiting values for the

P (A,k) for each situation in which the w. assume one of two values,w 1

one of which remains constant and the other approaches infinity. The

approximation is an interpolation between the appropriate limiting case

and the equal weights case. We try to convey the basic ideas behind the

limiting cases by heuristically considpring some examples.

Suppose k = 3 and that w =w 3 = c while w 2 =. Let p* !!z p*

b,' the maximum likelihood estimates of 11 9P2,P 3 subject to p 2 I P .P3

ani recall that P (A,3) is computed under the assumption that. p 1.

W- may assume that their common value is zero without loss of gerier:ility.

}eoall, also, the pool adjacent violators algorithm for computing

l ar, d j . Thi:s algorithm is disetussed beginninj, on pag, 1 of Barlnw

, . (1') . The v:ilu, of w, is proportional to the recipro n'_ of the

Vii:tnee of x.. Thus x1 and x are degenerate at 0 and x- is a
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unit normal variable. Either x2 > 0 in which case x2  forms a violation

with x 3 or x2 < 0 and forms a violation with x1 . If x2 < 0 then it

i; amalgamated with x arid they are both replaced by their weighted aver-
iI

aige and assigned weight w +w, which behaves like w1 . Since the weight

on x is infinite the weighted average behaves like xI. Similarly, if

r;igred weight w 2+w , or w 3 . Thus, Pw(3,3) = 0, P (1,3)

P )(1.2) and P (2,3) = P (2,2). Since P (1,2) = P (2,2)
(w1 ,) w (w 1 ,w 2  w w

for any 0 < wl,w2 < -, the limiting values are both 1/2. Noting that

P (13) = P (2.3), we see that this case was treated rigor-
(a,b,a) ' -(l,b/a,l)

ously by Robertson and Wright (1982a).

Now :;uppose wI =w = 1 and w2 = . Then, x2  IS depenerat,, at, 0

while x a nud x3  are unit normal variables. If x < 0 < x then we

will have three levels. In all the other cases, either x or x3  is

amalgamated with x2. When one of these amalgamations takes place the two

variables are replaced by a variable which is degenerate at zero. It fol-

lows that the number of levels is one less than the sum of the number of

ltvels among and and the number of levels among */ andP*

Moreover, these two numbers of levels are independent. Thus, the sequence

(p(1 3)33 I is related to the convolution of the sequence (P(1,2)]2
w Go1 I=

w,,, ,~2.:,, I . p-cirically, if fp(,)] ,[P3 1,2)]2 = [C then

2i:- th, probability of 1-1 levels, I 2,3,4.

Now 'orn- I er an arbitrary k and suppose iI 2 ,< .. < i :; art

or-d,''ed 2thbset of (l '''kJ; w. =w. =. 1 while the other
11 12 ii

weit ht:; are infinite. Let I = k-j and suppose A is the number of finite

t.2f on ftj, left. and B is the number of finite weights on the right.
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Specifically, wI =w2  =wA =1, WA+l wk =. andW Wkr+I

= wk =1. If one uses the pool adjacent violators algorithm to order the

first A+l estimates and the last B+l estimates, then in the former case

the last estimate will behave like XA+l with infinite weight on it and In

the latter case the first estimate will behave like 'k-B with infinite

w,_-i.ht. Thus, the number of levels is two less than the number of lovels among
* * . *

''A[plu.;. number of levels among I.A+I, -'-_B u. t; . humf-

twr of' levels among -B' " Moreover, these three numbers of levels

aire independent. The probabilities for the number of levels among

I'.," 'A+ nd among -B'''" are given by Chase. If w. = 1 for
AIl 1

;±riy i such that A+l - i < k-B then the corresponding x. must be
1

amalfgamated with one of the degenerate variables to one side of x. . Thus
1

the probabilities for the number of levels among ,' _ are simply

K, t,,ual weights probabilities, [P(iI) I  Thus the sequene of level

prubabilities is related to a convolution of three sequences, each of which

i2 ,asily computed. This idea is most succinctly expressed in terms of the

g wrLt~i igFunction of the sequence of limiting level probabi litio:- whirc

we denote by 8D k(S).

~ = -2
.k(S A+I(S I(s iB+I(S

A B

(/2 s+ A- I/a s +1 -1(i/2 s+ B- 1/2)

A I B

A 'i , , T q1 ' 'uld ho g|vn but, it. would provi if' Ti r w in:'ht :; . 'I'
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l(A,I) are tabled in Barlow et al. (1972) and the P C(L,A+l) are tabled

in [ob.rt~son arid Wright (1982b).

Wt, ro'ommenfl an ipproximatiorn which is an interpolation between criti-

raL] values (or P-values) romputed from X or F distributions associ-

:itd with the above limiting coefficients and distriLutions associated with

tl,. fequal weights case. In order to recommend a specific approximation we

!w,-1 to make two decisions. The first decision is, for a given set of

,ghts how to decide which are large and which are small. The second is

how to interpolate. The criteria for choosing large and small weights and

method of interpolation seem to be interrelated and we tried a very

,r' . number- of combinations, evaluating these combinations on the basis of

lrrr l rr':JI,,'d wi Au.hl :; ,t.: a, in Wi I Ov l u:0ttienl (f th e ('ql:11 woi h.:

7tir~proxi mat. ion.

Wt' tried cn]!ing weights large if they exceeded some fraction of the

large:st weigrht; if they exceeded some fraction of the sum of weif.hts; or

if they oxceeded some value midway between the largest and smallest weights.

W,. tcr,-d into-r;l()ltinr on various powers of the ratio of the largest wteight

", mal e- weight and the ratio of the average of those weights we

c:lled largre and the average of the ones we called small. Choices between

bna i .rl were iot always clear but almost everything we tried semed to

b. : '.,rat If- n i p!iroxImat.ion bae.d utpon the eq nal wei ht: c :,i al,,i,..

, i1on tlu:s, stud i e, our recommendation it. to cill we -ht,.s 1 art-'

• mirT(w 1 1w,',',wk) + .35 max(ww 2 , .. wk)

k 1 $. .. . . . .
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and to interpolate on the basis of the ratio of the 1/3 power of the aver-

oi" the large weights to the average of the small weights.

For example, suppose k =5, w = (1,1.2,5.6,1.4,4.7) and we are
-2

interested in a 5 percent critical value for the ) distribution

a:uociatcd with these weights. Then .65 min(wl,w 2,- ' ,w 5 ) + .35 max (wlw2 w5

= .; " I + 1. ) .6 = '.61. Thus, call the first, second and fourth weights

M: iII and the third and fifth large. The values of A, B and I are

given by A = 2, B = 0, I 2. The generating function of our limiting

cotfficients is given by

(1/2 s+ 3/2 s+l
5 2

1 s+3i)(sl s(s+l)
3 2 532
3 772 -6s + T s 3 16 16s

Thus, our limiting coefficients are P.(I,5) , 3 P.(2,5) = 16'16' 161

- (4,5)= P,(5,5) = 0. The five percent critical value

nf the associated X2 distribution is 4.8969. The five percent critical

vtlue of the equal weights --5 distribution is 5.0491. The ratio of the

:,wVra.De ]airge weight to the average small weight is 4.29. Thus, our

t, I,' 5 per-cent critical val Ou is

1 -(14 .2 - 1 / 3] •4.8969 + (4.2 - 1/3 - 5.o491 = 4.9906.

-2
The actual five percent critical value is 5.0996 and the actual V5

di:;tribution associated with these weights has the probability, .0527, to
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th, right, of' 4.9906. In other words, if we wanted a five percent test

and used 4.9906 as our critical value we would actually have QL= .0527.

This approximation also seems to give adequate approximations for the values of

Pw(1,k) and are thus adequate for computing P-values. In this example the actual

V.,Ilues of P (1,5) "'',w(5,5) are .1908, .4132, .3008 .0868, .0084.
w /'I , p , pr,'oxilw',Oi rl whi(-h }, .c wo'if:ht. ("11 ) )/  th(, otj,, vil w( jif it

values and 1 -4.29 -1/3 on the limiting values yields the values .1952,

.4247, .2997, .0753, .0051.

We evaluate our approx1TP.Cion as follows. For an arbitrary set of 5

weights we use our proceduL to compute an approximate 5 percent critical

value, a (w). Since k is 5 we can, as before, compute an exect value

ftor the prubability, A z a (w)]. If our approximation is good, this
w 5 .05

-should be close to .05. We did this for weights of the form w (lee,])

and w = (C,,rEl,.N,e) with £ = R- I and R = 1,2,°,4,5,10,15,20,2),30.

The results are given in Table 7. The numbers in parentheses are the values

we obtained using the equal weights approximation. It should be noted that

the approximation based upon the pattern of large and small weights per-

forms exceptionally well for U-shaped weight sets.

In Table 8 we have reported a frequency distribution of prw[X(>a (w)]

f)r 10,000 randomly generated weight sets. All 10,000 probabi lities f,.l]

betwen .0314 and .0745 and 9,754 fell between .040 and .060. Recall

thit, for the equal weights approximation all 10,000 fill between .0219 and

.0803 while 7,353 of these probabilities fall between .0O0 and .060.

Th, restj Ul .)f a stI,udy where the we igh t sets were randomly generated so as

oontrol the ratio of the largest weight to the smallest weight are given
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w= (Wei,) wE

pr [x2  a (w)]j pr rx >-a (w)]
w 5 .05 w 5 .05

1.0000 1 .o5oo (.0500) .0500 (.050o)

.5000 2 .0535 (.0420) .o514 (.0557)

.3333 3 .0540 (.0375) .0522 (.0590)

.2500 4 .0539 (.0346) .0576 (.0612)

.2000 5 .0536 (.0324) .0588 (.0629)

.1000 10 .0520 (.0267) .0622 (.0679)

.0667 15 .0509 (.0240) .0640 (.0705)

.0500 20 .0501 (.0224) .0652 (.0723)

.o4oo 25 .0496 (.0213) .0660 (.0736)

.0333 30 .0492 (.0205) .0667 (.0746)

Table 7. prw[x 2 a 5 (w)] for various weight configurations.5able
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in Table 9. It is interesting to note that for the 6000 weight sets

generated so that R < 10, the approximation gave true CL levels between

.04 and .6.

In Table 8 note that every ratio which is associated with a prob-

ability outside of [.048,.052] is at least 1.5. This is only slightly

larger than the value we obtained for the equal weights approximation.

However, every ratio which is associated with a probability outside of the

interval [.o4,.06] is at least 4.7. The corresponding value for the equal

weights approximation was 3.4. In the case k = 5 we conclude that if

the ratio of the largest weight to the smallest weight is no more than 4.7

then this approximation should provide an adequate result.

In order to evaluate our approximation for larger k, we again con-

!cidered randomly generated weight sets. With k = 10, weight sets of the

f'orm w. u./1 0 u , i = 1,2,' ',k, were generated and for each weight
S.1 =1i

set a. (W), the approximate . = .05 critical value was obtained. Of

.05

course, for k = 10, the true value of prw X > a 0 5 (w)] cannot be cal-w.1 r5 .e0

culated for arbitrary weight sets. Hence, it was estimated by Monte Carlo

techniques based on 4,000 iterations. So, ten uniform variables were

needed for each weight set as well as 40,000 normal variables to estimate

the appropriate probability. This process was repeated for 1000 wei ht sets.

T., number of weight sets was limited by the amount of computer time re-

quired for these results. As can be seen, this project required the gen-

erition of' over 40 million random variables. The frequency distribution

ror the estimated probabilities is given in Table 10. If one considers the

;qrroximationi "dequate if the estimated value of prw [- a 0 5 (w)] is in

[.l,.<, then it is interestinfg to note that 97.7% of the estimated

v'i!ues were in this range. This is a slight increase over the case k =;
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Mini- Maxi- Mini- Maxi-
Fre- mum mum Fre- mum mum

Tnterval quency Ratio Ratio Interval quency Ratio Ratio

[.0]2,.o16] 0 [.056,.o6o] 492 3.3 2117.6
[,o16,.020] 0 [.o6o,.o64] 109 5.4 3101.4

[.020,.024] 0 [.o64,.o68] 28 21.2 9545.8

r.024,.028] 0 [.068,.072] 3 122.5 496.4

[.o8,.032] 1 79.3 79.3 [.072,.076] 1 1238.1 1238.1

[.032,.036] 18 18.9 C [.076,.080] 0

[.036,.o40] 86 4.7 1414.1 [.o8o,.o841 0

[.o40,.044] 406 3.5 1026.5 [.o84,.o88] 0

[.o4,.o48] 1730 1.5 C [.088,.0921 0

[.048,.052] 4577 1.1 C [.092,.096] 0

[.052,-0561 2549 1.5 8747.9

Table 8. Frequency distribution for prw2 a (w)] with 10,000 randomly
w 5 .05

generated weight sets and a (w) computed using the approximation.
b05

All 1000 values of

[a,b] prwF 5 2 a.O(w)] in:

[1/9,10/9] [.0396,.06oo]

[1/4,5/4] [.o425,.0569]

[1/3,4/3] [.o431,.0561]

[1/2,3/2] [.o443,.0548]

[1,2] [.o463,.0529]

[2,3] [.0478,.0520]

Tr-iPlrw 9. Bounds on pr [X2 a (w)] when the weights are f.enevrated
w5 .05

that the ratio of the largest weight to the smallest weight. is

controlled.
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i [s an indication that the quality of the approximation is maintained

f:: k i.; increased to k = 10.

For further evaluation, we considered data sets in which the values

could be sample sizes for testing the homogeneity of a set of means versus

a trend alternative. Under the assumption of equality of variances these

va lu(e,, becomu the weights. We found approximate values for I (,,k) byW

Muite Carlo techniques based on 4,000 iterations and comuared thesp values

t hose1 : obtained by our approximation.

We also compared the tail probabilities of the two > distributions

corresponding to these two sets of approximate level probabilities. For

example, in Table 24.2 on page 617 of Neter, Wasserman and Whitmore (197")

w( found the nunber of twin-engine executive jets sold annually b.(tw en

l(8 and 1977 by an aircraft manufacturer. Taking these 10 number:, 147,

I ', 150, 191, 188, 179, 200, 220, 208, 330, as our weights we comnu'd

fht values of our approximate P (2,k)'s which we shall denot.o byW

P (1,10); 1 -l,2,'',l0. The values of P (1,10) and the relativa ,w a ,w

fr ,quencies of these counts which we denote by P (;,k) are reort,'d
m,w

in Table I1. The agreement is good. The maximum absolute difforonc, of

- , (2,.) - (A,l)[, 2 =1,2,' l0 is .0153 and occurs whe Z
',W m w

sWt- iso cornni u ted t,h, tail probabilit ies of tih y' di -,I. buI ",

,rr,', ondlin- +o '.he two sets of coefficients. Orec f'i.illy, w' *'omut'.

'.) 'or t = .%,..),l.5,''' ,30.0. The( maXiP1u (ii f r,, . w

fh-,,, ,( 1,'ii 1 ,robabilitier was .009% , nocurrin " al. t, = . . 'Uhcrv" u

,, , id 1 'i!, !t = 1 are Fivon in ',"able .. The

. " , " r' 'or t " a'y," vai ':, ,," t wa. on bc' rder

.I' .For a .I -nIfi c ance level around .1 the differer.-o wn.- Tou .
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Interval Frequency Interval Frequency

[.032,.0361 0 [.052,.056] 204

[.036,.oho] 7 [.056,.o6o] 75

[.04o,.o44] 68 [.o6o,.o64] 14

[.o4,.048] 265 [.o64,.o68] 2

[.048,.0521 365 [.068,.072] 0

Table 10. Frequency distribution of estimated values of pr wX 2 1 a 05(w)]

with 1000 randomly generated weight sets and a (w) computed
.05

using the approximation.

I .09425 .09555

2 .28975 .274h,5

3 .32600 .32092

4 19850 .204(9R

5 .07300 08018

o6 01600 .02021

7 .00225 .00333

8 .00025 00035

9 .00000 o000n

1') .00000

I 1., . Compari:;on of P (1,10) with P (2.W (Z I)
aWw m ,w

w= (IO!7, 175, 19), 1fl1, 180, i7' , ;'0) , 9.;), 99)S, K29).
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(110) 2 t] 10 2 t t Difference

.53300 .54302 .00903

* 34873 .35814 oo941-

.22856 .23663 .00807

.114935 .15572 .00637

.0)7[22 .10201 .00479

.(06306 .06655 00349

04076 .04325 .00249

.02627 .02801 .00174

.o1688 01809 .0021

.01082 .o1165 .00083

.)o692 .00748 .00056

.0442 .00479 .00037

.00281 .00307 .00026

.00179 .00196 .00017

S5 •0oi114 .00125 .00011

-2
Table 12. Comparison of the X distributions corresponding to Monte

Carlo and approximate values of P (C,10). w (147, 175,
w

150, 191, 188, 179, 200, 220, 208, 330).
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for : significance level around .05 the difference was about .003, and for

i sgnificance level around .01 the difference was about .0008.

The equal weights P(A,I0) are given in Table A.5 of Barlow, et al.

(1972). They also fit the P m,w(,10) very well in this example and, in

1'n et, they fit better than the approximation presented here. However, both

are eletrly adequate and, in general, we have seen that the approximation

prosented here outperforms the equal weights approximation.

We tried a number of weight sets with values of k larger than 5,

obtaining similar results each time. For example, we took the weights to

be the 12 values in Table 20.4 of Neter et al. (1978). The 12 weights

together with the approximate and Monte Carlo values are given in Table 13.

-2
We also computed the tail probabilities of the two corresponding X dis-

tributions at t =.5,l.0,''',45. The maximum absolute difference in these

-2
twu functions was .002. The largest difference in these X tail probn-

ilitie:; ,orresr)onding, to Monte Carlo P-values smaller than .15 was

.001)01. Comparing with the P(A,12) from Table A.5 of Barlow et al.

(1972), we see that the P (A,12) fit better in this example. In facta ,w

the fit for tail probabilities less than or equal to .15 is remarkable.

Another weight set and corresponding P a,w(,k) are presented in

Table 14. The weights are taken from page 513 of Neter et al. (1978). The

-2
maximum absolute difference in the two ( distributions corresponding to

Table 14 is .01025 and the maximum absolute difference corresponding to

Monte Carlo P-values less than .15 is .00415.

Thus, we have further evidence that the quality of the approximation

hold:; up for k > 5.
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I .o8oo .09011

2 .26525 .26344

3 .32425 .31680

4 .20425 .21131

5 .09125 .08831

6 .02250 .02462

7 .00575 .00472

8 .00075 .00063

9 .00000 .0000

10 .00000 .00000

11 .00000 .110000

12 .00000 .00000

1ale 3. Comparison of P aw(1,k) with Monte Carlo values of 11 (I k)

fcr K = 1:2 and w (155, 178, 215, 93, J, 8, 13h, VT, 'fl,

197, 207, 95, 183).
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I P (j ,15) P (1 ,15)

1 .07175 .06388

2 .21800 .21254

3 .30000 .300)4

h 23950 .24174

5 .11900 .12459

6 .03875 .04375

7 .01175 .01085

8 .00125 .00195

9 .00000 .00026

10 .00000 .00002

11 .00000 .00000

12 .00000 .00000

13 .00000 .00000

14 .00000 .00000

15 .00000 .00000

Table 14. Comparison of P (1,k) with Monte Carlo values of P w(,k)a~w w

for k = 15 and w = (55, 20, 35, 45, 40, 25, 55, 30, 60, 45,

35, 25, 45, 35, 30).
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4. Siskind's approximation. Siskind (1976) developed a very good approxi-

nation for P (A,k) based upon a Taylor's expansion. The level probabili-w

ties depena upon the weights only through a matrix, R, of partial corre-

lations. Let Q be the correlation matrix corresponding to the equal

w,'i1h :: -:I,,.. '', irtki rigl ,f' th," 1(Vol probahilit i ".. 1 ::, funetion2! of thil..

:,ir-i x ., ;k i 'rtppr Iximatiuor wa:; ba;ed up n 'Tay[or'. expan:; i oris of' the:;'-

Ilevel probabilities about the equal weights matrix, Q. His approximation

requires the values of certain derivatives of the P(A.,k)'s evaluated at

Q. Siskind provides a table of these values for k < 8. Thus, his tech-

ri pue is only usable for k r 8.

L Let s (w) denote the five percent critical value computed from
.05

,-skind's approximation for the weight set w = (WlW 2 ,W3 ,W1,W5) of Ze 5.

In Table 15 we have a frequency distribution for pr [25 s (W)] for
w 5 .05

2,000 randomly generated weight sets. All 2000 probabilities fell between

.0'53 and .0515 and 1884 fell between .040 and .0515. The percentage

which fell between .04 and .06 is slightly less than the percent that

f 11 between these values for the approximation based upon the pattern of

large and small weights. It seems unlikely that Siskind's approximation

would ever give a value larger than .052 and this is a very distinct advan-

tage for this approximation. In Siskind's study of his approximation, he

found that it did not perform well for U-shaped weights. In those cases

liihis approxLmation produced values that were considerably smaller than the

true tail probabilities. Recall that in this case the approximation based

up(mn the pattern of large and small weights performs quite well. Siskind's

approximation seems to be more likely to give a very low value than the

:iaiproxima. ion based upon the pattern of large and small weights and the



Mini- Maxi- Mini- Maxi-
Fre- mum mum Fre- mum mum

Intorval quericy Ratio Ratio Interval quency Ratio Ratio

I .r7, .0( ] 0o [.o56,.o6o] 0

.;,.020 ] 0 [.060,.064] 0

[ .o0, .o , 0 [.o64,.o68] 0

S.02.028] 4 196.8 819.5 [.68,.072 0

. 8,.ov] 18 70.5 2471.8 [.072,.076] 0

() 27 27.9 3126.6 [.076,.0801 0

[, oL T L 20.7 1076.2 [.080,.o841 0

I .,94r),.o01 ] 179 7.1 3383.0 [.o84,.o881 0

* . ,.%8{] 481 2.9 1187.1 [.088,.0921 0
. ,. '24 1228 1.3 506.2 [.092,.096] 0

r ,:'; .O't ] 0

Table 15. Frequency distribution for pr w2 S (w)] with 2000 randomly
wX5 .05

generated weight sets. The value of s (w) is comnuted using
.05

Siskind's approximation.
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I'"ct. that Siskind's approximation is only valid when k 8 is a definite

dr-,wback.

Acknowledgement. Carolyn Pillers wrote several of the computer programs

which were used in this study. We are indebted to her for her able assis-

t.tfl ('e.
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